The Zak Transform and the Structure of Spaces Invariant by the Action of an Lca Group
نویسندگان
چکیده
We study closed subspaces of L(X ), where (X , μ) is a σ-finite measure space, that are invariant under the unitary representation associated to a measurable action of a discrete countable LCA group Γ on X . We provide a complete description for these spaces in terms of range functions and a suitable generalized Zak transform. As an application of our main result, we prove a characterization of frames and Riesz sequences in L(X ) generated by the action of the unitary representation under consideration on a countable set of functions in L(X ). Finally, closed subspaces of L(G), for G being an LCA group, that are invariant under translations by elements on a closed subgroup Γ of G are studied and characterized. The results we obtain for this case are applicable to cases where those already proven in [5, 7] are not.
منابع مشابه
Frames and Homogeneous Spaces
Let be a locally compact non?abelian group and be a compact subgroup of also let be a ?invariant measure on the homogeneous space . In this article, we extend the linear operator as a bounded surjective linear operator for all ?spaces with . As an application of this extension, we show that each frame for determines a frame for and each frame for arises from a frame in via...
متن کاملGeneralization of Titchmarsh's Theorem for the Dunkl Transform
Using a generalized spherical mean operator, we obtain a generalization of Titchmarsh's theorem for the Dunkl transform for functions satisfying the ('; p)-Dunkl Lipschitz condition in the space Lp(Rd;wl(x)dx), 1 < p 6 2, where wl is a weight function invariant under the action of an associated re ection group.
متن کاملThe existence of Zak transform in locally compact hypergroups
Let K be a locally compact hypergroup. In this paper we initiate the concept of fundamental domain in locally compact hypergroups and then we introduce the Borel section mapping. In fact, a fundamental domain is a subset of a hypergroup K including a unique element from each cosets, and the Borel section mapping is a function which corresponds to any coset, the related unique element in the fun...
متن کاملImportance of Zak Transforms for Harmonic Analysis
In engineering and applied mathematics, Zak transforms have been effectively used for over 50 years in various applied settings. As Gelfand observed in a 1950 paper, the variable coefficient Fourier series ideas articulated in Andre Weil’s famous book on integration lead to an exceedingly elementary proof of the Plancherel Theorem for LCA groups. The transform for functions on R appearing in Za...
متن کاملHarmonic Analysis on Heisenberg Nilmanifolds
In these lectures we plan to present a survey of certain aspects of harmonic analysis on a Heisenberg nilmanifold Γ\Hn. Using Weil-Brezin-Zak transform we obtain an explicit decomposition of L(Γ\H) into irreducible subspaces invariant under the right regular representation of the Heisenberg group. We then study the Segal-Bargmann transform associated to the Laplacian on a nilmanifold and charac...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014